Quantum typicality: what is it and what can be done with it?

Jochen Gemmer

University of Osnabrück,

LMU Muenchen, May, Friday 13th, 2014
Outline

- Thermal relaxation in closed quantum systems?
- Typicality in a nutshell
- Numerical experiment: model, observables and results
- Typicality in formulas
- Spin transport in the Heisenberg chain
- Eigenstate thermalization hypothesis
Thermal relaxation in closed quantum systems?

Why it exists: We see it in system we assume to be closed.

Why it does not exist: There are issues with the underlying theory:

(Non-eq.) Thermodynamics

- autonomous dynamics of a few macrovariables
- attractive fixed point, equilibrium
- often describable by master equations, Fokker-Planck equations, stochastic processes, etc.

Quantum Mechanics

- autonomous dynamics of the wave function (number of parameters: insane)
- no attractive fixed point (Schroedinger equation)
- Schroedinger equation is no rate equation

Quantum systems that explicitly exhibit relaxation but are not of the “small system + large bath” type appear to be rare in the literature.

To cut it short: Why and how do two cups of coffee thermalize each other?
Typicality in a nutshell

The naive view on relaxation i.e. 2nd law of thermodynamics:

\[
\hat{\rho}_0 = |\psi\rangle\langle\psi| \quad \text{evolves into} \quad \hat{\rho}_{eq} = \frac{1}{Z} e^{-\frac{\hat{H}}{kT}} \quad \text{or} \quad \hat{\rho}_{eq} \approx \frac{1}{Z} \delta(\hat{H} - E)
\]

problem: invariance of Von Neuman-entropy

\textit{traditional cure: open quantum systems} \Rightarrow this requires:
large, doable, broad band environment (usually oscillators), adequate weak
coupling (Van-Hove structure), applicability of projection techniques, specific
initial states: factorizing, thermal bath, etc.

Typicality:

\[
\hat{\rho}_0 = |\psi\rangle\langle\psi| \quad \text{does not evolve into} \quad \hat{\rho}_{eq} = \frac{1}{Z} e^{-\frac{\hat{H}}{kT}}, \quad \hat{\rho}_{eq} \approx \frac{1}{Z} \delta(\hat{H} - E)
\]

but \[\langle \psi | \hat{A}(t) | \psi \rangle \] evolves into \[\approx \text{Tr}\{\hat{\rho}_{eq} \hat{A}\}\]

for many (all?) \(\hat{A}, |\psi\rangle \) \textit{Can this be true?}
Numerical experiment: model and observables

Heisenberg-type Hamiltonian: A ladder with anisotropic, XXZ-type couplings which are strong along the legs and weak along the rungs:

\[
\hat{H} = \sum_{ij} J_{ij} (\hat{\sigma}_i^x \hat{\sigma}_j^x + \hat{\sigma}_i^y \hat{\sigma}_j^y + 0.6 \hat{\sigma}_i^z \hat{\sigma}_j^z),
\]

\(J_{ij} = 1\) for solid lines, \(J_{ij} = \kappa = 0.2\) for dotted lines and \(J_{ij} = 0\) otherwise. Total number of spins: \(N = 32\). The \(z\)-component of total magnetization \(S_z = \sum_i \hat{\sigma}_i^z\) is conserved.

We analyze: “magnetization difference” \(\hat{x}\)

\[
\hat{x} = \left(\sum_{l \in L} \hat{\sigma}_z^l - \sum_{r \in R} \hat{\sigma}_z^r \right)
\]

eigenvalues of \(\hat{x}\) within the subspace of vanishing total magnetization, \(S_z = 0\): \(X = -16, -14, \ldots , +16\).
Numerical experiment: results

\(\hat{x} \): z-magnetization difference between legs

\(P_X(t) \): probability to find a certain \(X \)

H. de Raedt, K. Michielsen (Juelich)

![Graph showing time-shifted \(\langle \hat{x}(t) \rangle \)]

![Graph showing variances of \(x \)]

Data from solving the Schroedinger equation \((N = 32)\) for two pure, partially random initial states:

\[
|\psi_X(0)\rangle = e^{-\alpha \hat{H}^2} \hat{P}_x \hat{P}(S_z = 0) |\omega\rangle,
\]

Remark: taking this picture took 6h on 65 000 CPU’s. Thanks to:

J.Gemmer quantum typicality
“static typicality”

\[<A> := \frac{\text{Tr}\{\hat{A}\}}{d} \text{ expectation value of the maximally mixed state} \]

\[|\omega\rangle \text{ uniform random states sampled according to the unitary invariant measure} \]

\[\text{HA}[\langle \omega | \hat{A} | \omega \rangle] =<A> \quad \text{HV}[\langle \omega | \hat{A} | \omega \rangle] = \frac{1}{d+1} (<A^2> - <A>^2) \]

In a high dimensional Hilbert space almost all possible states feature very similar expectation values for observables with bound spectra. \(\Rightarrow \text{It is no surprise to find these “equilibrium” expectation values overwhelmingly often.} \)

“dynamical typicality”

\[|\psi\rangle := \sqrt{\hat{\rho} d} |\omega\rangle \text{ “taylored”, non-uniform random states,} \]

\[\langle \psi | \hat{A}(t) | \psi \rangle \approx \text{Tr}\{\hat{A}(t)\hat{\rho}\} \]

The statistics variance of \(\langle \psi | \hat{A}(t) | \psi \rangle \) decreases as \(1/d_{\text{eff}} \) where the latter is the inverse of the largest eigenvalue of \(\hat{\rho} \).

\(\Rightarrow \text{Very many different pure states exhibit dynamics of expectation values close to those of corresponding mixed states} \)

If \(\hat{\rho} \) is of “exponential form”, e.g., \(\hat{\rho} \propto e^{-\beta(\hat{H} - \bar{E})^2 - \alpha(\hat{A} - A_0)^2} \) or \(\hat{\rho} \propto e^{-\beta \hat{H} - \alpha \hat{A}} \) than one may infer dynamics of mixed states from “pure state propagation”
Spin transport in the anisotropic Heisenberg chain (PRL, 112, 120601, (2014))

Linear response \Rightarrow conductivity from current autocorrelation function

here: infinite temperature, i.e., $\hat{\rho} := \hat{J}/d$, $\hat{A} := \hat{J}$

$C(t) \propto \text{Tr}\{\hat{J}(t)\hat{J}\}$
Eigenstate thermalization hypothesis (ETH)

ETH: Eigenstates of some Hamiltonian \hat{H} that are close in energy feature expectation values of some observable \hat{A} that are close to each other.

$$E_n \approx E_m \rightarrow \langle n | \hat{A} | n \rangle \approx \langle m | \hat{A} | m \rangle$$

Jochen’s formulation: “Eigenstates belong to the set of typical states”

If ETH applies:
- Expectation values from microncanonical ensembles are close to expectation values of individual eigenstates
- Initial state independent (ISI) equilibration:

$$\langle \hat{A}(t) \rangle = \sum_{n,m} \rho_{nm} A_{mn} e^{i(E_n - E_m) t}$$

If the oscillating terms behave like “white noise” for τ large enough

$$\langle \hat{A}(\tau) \rangle = \sum_n \rho_{nn} A_{nn}^{\text{ETH}} \approx A_{nn}$$

But does ETH apply? Have to check by exact diagonalization, or.......
\(\hat{A} := \hat{x}^2 \): width of the magnetization distribution

\[
\hat{\rho} \propto e^{-\alpha (\hat{H} - U)^2} \quad \bar{A} := \sum_n \rho_{nn} A_{nn} \approx \langle \psi | \hat{A} | \psi \rangle
\]

\[
\Sigma^2 + \bar{A}^2 := \sum_n \rho_{nn} A_{nn}^2 \approx \text{Re}[\langle \psi(\tau) | \hat{A} | \psi'(\tau) \rangle]
\]

ETH applies!

\(\Sigma \) scales approx like \(\hat{H} \) was a random matrix.
Is ISI equilibration always driven by ETH?

Back to the two cups of coffee: Temperature differences between macroscopic object always equilibrate, regardless of the objects ⇒ ETH always fulfilled? We investigate energy differences \(\hat{A} = \hat{H}_L - \hat{H}_R \) between all sorts of coupled “spin-objects”

Seems like the ETH is indeed always fulfilled, but what about “integrable” systems?
Consider energy difference dynamics in a clean Heisenberg chain w.r.t. 1:2 partition using initial states like

$$|\psi(0)\rangle \propto e^{-\alpha \hat{H}^2 - \beta (\hat{A} - N_L)^2} |\omega\rangle$$

There appears to be ISI equilibration for large systems.

Check scaling of Σ.

The ETH is violated w.r.t. the bare Σ.

Define “scaled” ETH parameter Σ/δ:

$$\delta^2 = \text{Tr} \left\{ \frac{1}{Z} \hat{A}^2 e^{-\alpha \hat{A}^2} \right\} - \text{Tr} \left\{ \frac{1}{Z} e^{-\alpha \hat{H}^2} \right\}^2$$

The scaled ETH parameter appears to vanish in the limit of large systems.

(erratum: $D \Rightarrow A$)
People who truly did the work: R. Steinigeweg, H. de Raedt, K. Michielsen A. Khodja, D. Schmidtke, C. Gogolin

Thank you for your attention!

The talk itself as well as the mentioned papers may be found on our webpage.