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Model class and objectives

@ 3-d one-particle tight binding model

@ random, uniformly distributed “lattice”
sites, unit density

@ no interaction or external decohering
mechanism
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Hamiltonian:

H=> R(x,y)a:a, + hc.
xHy

hopping amplitudes (integrals)

R(x,y) = exp(=|x — y|/l =i®(x,y))

@ May the quantum motion of a particle
in such a system be described as
diffusive, localized, ballistic, etc.?

@ If so what are diffusion coefficients,
mobilities, mean free paths, etc?

first model class: random phases, i.e.,

®(x, y) random, uniformly distributed real
numbers
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Cheap check of localization

inverse participation ratio: P~'(E) = Z|(E|§j{éx|E>|4

inverse part. ratio vs. energy mobility and band edges vs. energy
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Seems like above / = 0.3 there is at least a substantial portion of extended
states. Bauer et al. claim an Anderson transition at / ~ 0.257 ( J. Phys. C. 21
(1988))
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Projection onto density waves

Partition “lattice” into “slabs”. Define “slab
occupation number” A(X)

xfromX

Define density wave operator g
g = Zcos(qX)ﬁ(X)
X

and exp. val. Tr{mgp(t)} = mq(t)

7q2 Dt

diffusive implies: mq(t) xx e

Determine mq(t) with a projection operator
method, e.g., “TCL".

projector: Pp=1+ Z Tr{%mq
q
q

“perturbative approach” A = Fo + AV, Hp:
intra-slab hopping, V: inter-slab hopping

= g = — Z)\"Knyq’q/(t)mq/ (n : even)

n,q’
“statistical periodicity”
2
K2,q,q’(t) ~ 5qq’q D(t)
diffusive if: K2.q,4(t)/q* ~ D(const.)

Ka,q.4(t)/q* vs. time

()

looks nice but....
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Projection onto density waves

...is that correct in the sense
that the second order
contains the relevant
physics?

....... better countercheck by
another method!

n(x) diffusive implies
constant increase of spatial

variance 265(t) = 2D

Choose an initial state which
has the particle concentrated
at the center of a cube.
Calculate the increase of the
variance by numerical
diagonalization = maximum
cube size &~ 25 X25X25.

increase of variance vs. time

T T
1.2+ ;:° < 00 au“aeuazooou
Qgeg o
3 o
8
o
s
o IS
M °
e . .
[a]
A o L=25 °
s L=20
- L=15 o
8 — TCL °
o o
o
00
°o
0 I L °e
0 2 4

t

Everything seems to fit nicely = use projective approach
for longer hopping lenghts =
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Projection onto density waves

diffusion coefficient vs. hopping lengths

3

TD random phases  +
classical random walk -

’ @ reasonable suggestions for concrete
ot o diffusion coefficients may be obtained
for the totally disordered model

o @ in a wide range the quantum result is
i} in good accord with a classical random
walk on the sites with rates given by
I ] “Fermis Golden Rule", i.e., 27|R(x, y)|?
OUZ W’”W‘O‘; - 0.6 O‘B 1 12 14

quantum and classical
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Failure of projection onto density waves for “constant phase model”

Second model class: again

H=> R(x,y)a:4, + hc.

X,y

R(x,y) = exp(=[x = y|/I = i®(x,y))
but now, no phases of hopping amplitues,
i.e., (x,y) =0.

The above second order projective approach
essentially yields unaltered results. But
counterchecking with increase of variance
no longer yields any agreement !

@ no agreement with second order
projection onto density waves

@ no conclusive result from exact
diagonalization due to finite size effects
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)

D(t) vs. time
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@ what to do now?

@ Einstein relation implies

t
| e = o)
0
decay of current looks exponential !

sordered systems
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Projection onto the current

@ current decays exponentially like We find:

¢ ¢ ¢ ¢

expected for a periodic model featuring ) ]
impurities. o diagonal elements much bigger:

|Hi[> >> |Huwr |?
= try to map the model onto an

impurity model. @ diagonal elements form a “dispersion

relation” Hux =: E(k) = (1 + I?k*)™>
@ current operator takes the form
J = |kYOE |0k (k|
1 thus we:
|k} = N Zeﬂkx|x> @ take the diagonal part in the
x momentum basis for the unperturbed
Hamiltonain Hp

we try cubic momentum lattice
featuring a spacing of 27/L. This
yields a set of “momentum states”

this set is:
normalized @ project onto the current

. Pp=T1+ JTr(Jp)(Tr(J?))?
slightly non-orthogonal o P (p)(Tr(S7)

. this yields:
slightly under or overcomplete

) ) @ a current decay rate R:

transform nevertheless the Hamiltonian

7 1\ ~ —Rt
into this basis, i.e., calculate Tr (J(t)J) ~e

<k|l:l|kl> = Hkk’
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Projection onto the current / Results

D(t) vs. time diffusion coefficients vs. hopping lengths
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Data from current projection seem to fit
reasonably for / = 1. Thus we compute Constant phase model and random phase
diffusion coefficients for larger / only from model show clearly different transport

current projection properties.
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Mean free paths / Conclusions / Acknowledgements

mean free paths vs. hopping lengths
6 T T

o constant phases @ Calculation of transport properties of
> random phases entirely disordered one particle
quantum models seems feasible

@ Even topologically completely

. i disordered systems may show a
transition from hopping to band
transport

mean free path
¢

@ The transition may be “induced” by

o s s hanging the hopping length
83 06 09 12 ¢
|

If you are interested in Refs. just ask me.
Around / = 0.8 the constant phase model

undergoes a transition from hopping to Thanks to Robin Steinigeweg and you the
band-type transport, inspite of its complete audience!

topologigal disorder. That does not occur

for the random phase model

H. Niemeyer, J.Gemmer quantum transport in disordered systems



