From Quantum Mechanics to Thermodynamics?

Dresden, 22.11.2004
Jochen Gemmer
Universität Osnabrück
Table of Contents

- Motivation and perspective
- Brief review of historical approaches to thermodynamical behavior
- Quantum approach to thermodynamical behavior
- The route to equilibrium
- Summary and conclusion
Motivation and Perspective

The main scope of our work is to:

- clarify or explain the origin of thermodynamical behavior entirely on the basis of Hamilton models and Schrödinger-type quantum dynamics.
- define the thermodynamical limit more precisely, especially with regard to small systems or small subunits of systems.
- improve the understanding of transport phenomena, especially in the regime of transport through small quantum systems.
- pave the road towards quantum thermodynamical machines?
Fundamental Law or Emergent Description?

Quantum Mechanics

\[i\hbar \frac{\partial}{\partial t} \Psi = \left(-\frac{\hbar^2}{2m} \Delta + V \right) \Psi \]

Classical Mechanics:

\[m \frac{d^2 \vec{x}}{dt^2} = -\nabla V \]

Thermodynamics:

\[dU = TdS - pdV \]
\[\frac{dS}{dt} > 0 \]
Fundamental Law or Emergent Description?

Quantum Mechanics

\[i\hbar \frac{\partial}{\partial t} \Psi = \left(-\frac{\hbar^2}{2m} \Delta + V \right) \Psi \]

→ “Heisenberg Cut” →

Classical Mechanics:

\[m \frac{d^2}{dt^2} \vec{x} = -\nabla V \]

Thermodynamics:

\[dU = TdS - pdV \]

\[\frac{dS}{dt} > 0 \]
Fundamental Law or Emergent Description?

Quantum Mechanics

\[i\hbar \frac{\partial}{\partial t} \Psi = \left(-\frac{\hbar^2}{2m} \Delta + V \right) \Psi \]

→ “Heisenberg Cut” →

Classical Mechanics:

\[m\frac{d^2 \vec{x}}{dt^2} = -\nabla V \]

Ergodicity

\[\frac{dS}{dt} > 0 \]

Thermodynamics:

\[dU = TdS - pdV \]
Fundamental Law or Emergent Description?

Quantum Mechanics

\[i\hbar \frac{\partial}{\partial t} \Psi = \left(-\frac{\hbar^2}{2m} \Delta + V \right) \Psi \]

→ “Heisenberg Cut” →

Classical Mechanics:

\[m \frac{d^2}{dt^2} \vec{x} = -\nabla V \]

Ergodicity

Thermodynamics:

\[dU = TdS - pdV \]
\[\frac{dS}{dt} > 0 \]
Some Features of Thermodynamical Behavior

2. Law: \[\frac{dS}{dt} \geq 0 \]

- All systems evolve towards equilibrium.
- Equilibrium is characterized by maximum entropy.
- If energy is exchanged with the environment, equilibrium is characterized by a Boltzmann distribution.

1. law: \[dU = TdS - pdV \]

- Description requires very few variables.
- Intensive variables are partial derivatives of energy with respect to the corresponding extensive variables.
- Systems in exchanging contact feature the same intensive variables.

How can this be explained on the basis of Newtons or Schrödinger's equations, that do not feature any fixpoint?

Even more severly they are invariant with respect to time reversal!
Entropy Dynamics in Phase Space: The Second Law

Boltzmann:
- Ergodicity
- Cell Size
- Averaging Time

Gibbs:
- Liouville's Law
- Mixing
- Cell Size

Ehrenfest:
- Definition of Macroscopic Cells
- Phase Space Velocity
Thermodynamics based on Classical Mechanics ?
Thermodynamics based on Classical Mechanics?

“Over the years enormous effort was invested in proving ergodicity, but for a number of reasons, confidence in the fruitfulness of this approach has vaned”

Thermodynamics based on Classical Mechanics?

“Over the years enormous effort was invested in proving ergodicity, but for a number of reasons, confidence in the fruitfulness of this approach has vaned”

Heisenberg cut? ⇒ Typical Gas:

Particle masses: ≈ 1 – 100 Proton masses

Particle sizes: ≈ 10^{-10} m

Width of a wavepackage at \(t = 0 \): 10^{-10} m

Width of a wavepackage at \(t = 1 \text{ sek.} \): 1 m – 100 m

Classical description of thermodynamical systems in general a priori arguable.
A Quantum Approach to Thermodynamics

Von Neumann Entropy: \(S = -k \text{Tr}\{\hat{\rho} \ln \hat{\rho}\} \)

Purity: \(P = \sqrt{\text{Tr}\{(\hat{\rho})^2\}} \)

Entropy and Purity do not map exactly but: \(S_{\text{max}} \approx P_{\text{min}} \)

entirely isolated system: \(i\hbar \frac{d}{dt} \hat{\rho} = [\hat{H}, \hat{\rho}^g] \Rightarrow \frac{dP}{dt} = 0 \Rightarrow \frac{dS}{dt} = 0 \)

How can entropy possibly change?
Composite Systems

System consisting of considered system \((S)\) and environment \((E)\):

\[
i\hbar \frac{d}{dt} \left| \Psi \right> = \left(\hat{H}^S + \hat{H}^E + \hat{I} \right) \left| \Psi \right> \quad \hat{\rho}^S := \text{Tr}_E \{ \left| \Psi \right> \left< \Psi \right| \}
\]

in general: \(\hat{I} \neq 0 \) \(\Rightarrow \) \(\frac{dS}{dt} \neq 0 \)

thermally insulated means: \(\left[\hat{H}^S, \hat{I} \right] = 0 \) but not: \(\hat{I} = 0 \)

Entropy may be changed also by interactions that do not exchange energy!
Hilbert space “Landscapes”

Why does entropy increase?

Entropy is defined pointwise on Hilbert space: $S = S(|\Psi\rangle) \Rightarrow \text{“Entropy landscape”}.$

Conjecture: For “large” environments almost all accessible composite system microstates $|\Psi\rangle$ feature almost maximimum local entropy!
Hilbert space Averages

Representation of state spaces:

Classical Mechanics: State definition: $\Gamma = \{x_n, p_n\}$

Phase space, Cartesian coordinates $\{x_n, p_n\}$

Quantum Mechanics: State definition $|\psi\rangle = \sum_n (\phi_n + i\phi'_n)|n\rangle$

Hilbert space, Cartesian coordinates $\{\phi_n, \phi'_n\}$

Energy conservation imposes a condition on the $\{\phi_i\}$, set by the initial state $|\Psi(0)\rangle$
\Rightarrow Accessible Region (AR)

Hilbert space average: $<<f>> = \int_{\text{AR}} f(|\Psi\{\phi_i\}\rangle) \prod_i d\phi_i$
Microcanonical and Canonical Conditions

Microcanonical Conditions:
Hilbert space average of the purity over the AR under microcanonical conditions:

\[
<< P^g >> \approx P^g_{\text{min}}(|\Psi(0)\rangle) + \frac{\epsilon(|\Psi(0)\rangle)}{N^{E}_{\text{rel}}} \quad N^{E}_{\text{rel}} >> 1 \quad \Rightarrow \quad << S^S >> \approx S^{S}_{\text{max}}
\]

\(N^{E}_{\text{rel}} \): Degeneracy of the relevant energy levels of the environment

Canonical conditions
Energy exchange \(\Rightarrow \) Occupation number landscape
Hilbert space averages of the occupation numbers over the AR under canonical conditions:

\[
<< W^S(E) >> \propto N^S(E)N^E(U - E)
\]

If the system was ergodic, time averaging would yield the same formula!
The Smallest Thermodynamical System

\[\hat{I}_{\text{can}} = \sum_i c_i \hat{\sigma}^+ \hat{a}_i^- + c_i^* \hat{\sigma}^- \hat{a}_i^+ \]
\[\hat{I}_{\text{mic}} = \sum_i (c_i^0 \hat{\sigma}^+ \hat{\sigma}^- + c_i^1 \hat{\sigma}^- \hat{\sigma}^+) (\hat{b}_i^- + \hat{b}_i^+) \]

\(\hat{a} \): Interband Transition \(\hat{b} \): Innerband Transition \(c_i \): Randomly distributed small complex numbers

Solve the Schrödinger equation \(\Rightarrow \) Thermodynamics!
Systems may evolve into a Boltzmann distribution without the environment being in a thermal state.
Fluctuations vanish like $\sqrt{\frac{1}{N^E}}$ with the environment size.
Equilibrium may be enforced onto subunits by the considered system itself.
The Route to Equilibrium

How can statistical, exponential relaxation processes be explained?

Fermis Golden Rule: *Der unbestreitbare Erfolg der Goldnen Regel muss bei genauem Hinsehen allerdings mehr als verblüffen, da wir zu ihrer Ableitung mehrere sich zum Teil eklantant widersprechende Voraussetzung benützt haben.* (Nolting 5/2)

Weisskopf Wigner Theory: Explains the decay of an exitation in an atom coupled to the electromagnetic field at $T = 0$. Hard to generalize!

Quantum Master Equations:

- Systems must be Markovian
- Initial state must factorize
- Bath state must be thermal
- Often systems are assumed to remain uncorrelated
- Backactions onto the bath are ignored
Hilbert space Average Method (HAM)

For a short time-step τ, second order time-dependent perturbation theory yields:

$$|\Psi(t + \tau)\rangle \approx \hat{U}(t, \tau)|\Psi(t)\rangle$$

Short time evolutions of matrix elements of the density matrix of the considered system read

$$\langle \Psi(t + \tau)|i\rangle\langle j|\Psi(t + \tau)\rangle = \langle \Psi(t)|\hat{U}^+(t, \tau)|i\rangle\langle j|\hat{U}(t, \tau)|\Psi(t)\rangle := \rho_{ij}(|\Psi\rangle, t, \tau)$$

Markovian Systems: Computing the Hilbert space average of ρ_{ij} over an appropriate region yields

$$<< \rho_{ij}(|\Psi\rangle, t, \tau) >> \approx \rho_{ij}(t) - \tau \sum_{lm} \gamma_{ijlm}\rho_{lm}(t)$$

Replace actual value by Hilbert space average and iterate \Rightarrow

$$\dot{\rho}_{ij} = -\sum_{lm} \gamma_{ijlm}\rho_{lm}(t)$$
Pure state Schrödinger dynamics may give rise to an exponential decay.
Summary and Conclusion

- Quantum systems, that are weakly coupled to larger systems, show, under pure Schrödingerian dynamics, a strong tendency towards thermodynamical equilibrium, even if no energy is exchanged.

- The occurrence of thermodynamical behavior depends on various conditions, but there is no minimum size or particle number.

- Energy exchange between moderate sized quantum systems may appear merely statistical. This might lead to an improved understanding of thermal transport.
Quantum Thermodynamics
Emergence of Thermodynamic Behavior Within Composite Quantum Systems
Lecture Notes in Physics, Vol 657
Gemmer J., Michel M., Mahler G.
ISBN 3-540-22911-6

Less costly:

Google:
Quantenthermodynamik, Gemmer

(English site under construction.)
Acknowledgements

Thanks to:
you, the audience,
Andreas Buchleitner (Dresden),
Peter Borowski (Dresden),
Mathias Michel (Stuttgart),
Matthias Exler (Osnabrück),
Jürgen Schnack (Osnabrück),
and many more.