Reservoir coupling approach to transport in quantum systems

Jochen Gemmer

University of Osnabrück,

RWTH Aachen, Dec. 03. 2008

Contents

- Introduction
 - The "why" and the "how"
 - Modelling reservoirs ⇒ Quantum Master Equations (QME)
 - Stochastic unravelling: a way to solve the QME
- Concrete set ups and results
 - The Heisenberg chain
 - "One particle modular quantum system"

Introduction

The "why" and the "how"

Why? ⇒ To determine (bulk) transport properties of systems

Other tools:

- map onto a Boltzmann equation
- linear response (Kubo formula)
- project onto density waves
- Landauer formula ... etc.

How?

- find a pertinent equation of motion for $\hat{\rho}$ coupled to different baths
- find its stationary non-equilibrium state
- extract density gradient $\nabla n(x)$ and current j(x) and compute $D = j/\nabla n$

Is the so described transport behavior due to the system or the bath contacts? How does this transport description compare to other descriptions?

Modelling reservoirs ⇒ Quantum Master Equations (QME)

"microscopical"

model system+bath+coupling:

$$\hat{H} = \hat{H}_{\mathcal{S}} + \sum_{\mathbf{n}} \epsilon_{\mathbf{n}} \hat{\mathbf{a}}_{\mathbf{n}}^{+} \hat{\mathbf{a}}_{\mathbf{n}} + \hat{V}, \quad \frac{\mathrm{d}}{\mathrm{d}t} \hat{\rho} = \mathrm{i}[\hat{H}, \hat{\rho}]$$

"Project" onto $\hat{
ho}_{S}(t)\otimes\hat{
ho}_{B}(eta)$ and truncate the, e.g., Nakajima-Zwanzig equation at leading order

$$rac{\mathsf{d}}{\mathsf{d}\,t}\hat{
ho}_{S}^{D}(t)=\int_{0}^{\infty}\mathcal{G}'(t,t')\hat{
ho}_{S}^{D}(t')$$

Redfield approximation (QME):

$$rac{\mathsf{d}}{\mathsf{d}t}\hat{
ho}_{\mathcal{S}}(t)=\mathsf{i}[\hat{H}_{\mathcal{S}},\hat{
ho}_{\mathcal{S}}(t)]+\mathcal{G}\hat{
ho}_{\mathcal{S}}(t)$$

 \mathcal{G} : superoperator, linearily maps a matrix onto another

"phenomenological"

find a linear, time local equation which evolves a density matrix into a density matrix, i.e., "Lindblad form" (QME):

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}\hat{\rho}_{S}(t) &= \mathrm{i}[\hat{H}_{S},\hat{\rho}_{S}(t)] + \mathcal{L}\hat{\rho}_{S} \\ \mathcal{L}\hat{\rho}_{S} &= \sum_{k} \alpha_{k} \left(\hat{E}_{k}\hat{\rho}_{S}\hat{E}_{k}^{\dagger} - \frac{1}{2}[\hat{E}_{k}^{\dagger}\hat{E}_{k},\hat{\rho}_{S}]_{+}\right) \end{aligned}$$

Determine \hat{E}_k , α_k from the "result"

The problem: \mathcal{G} is not necessarily of Lindblad form.

"Lindbladization" is a subtle thing, crucial features may be lost

But why Lindblad form?

Stochastic unravelling: a way to solve the QME

The solution $\hat{\rho}(t)$ of a QME in Lindblad form is equivalent to an ensemble of trajectories generated by , e.g., this piecewise deterministic differential equation (PDDE):

$$\begin{split} \mathrm{d}|\psi(t)\rangle &= -\mathrm{i}\; \hat{G}(|\psi(t)\rangle)\,|\psi(t)\rangle\,\mathrm{d}t + \sum_{k} \left(\frac{\hat{E}_{k}|\psi(t)\rangle}{\|\hat{E}_{k}|\psi(t)\rangle\|} - |\psi(t)\rangle\right)\mathrm{d}n_{k} \\ \hat{G}(|\psi(t)\rangle) &= \hat{H} - \frac{\mathrm{i}}{2}\sum_{k} \alpha_{k}\hat{E}_{k}^{\dagger}\hat{E}_{k} - \alpha_{k}\|\hat{E}_{k}|\psi(t)\rangle\|^{2} \\ \langle \mathrm{d}n_{k}\rangle &= \|\hat{E}_{k}|\psi(t)\rangle\|^{2}\,\mathrm{d}t\,,\quad \mathrm{d}n_{k}\,\mathrm{d}n_{l} = \delta_{kl}\,\mathrm{d}n_{k} \end{split}$$

Poisson increments: $dn_k \in \{0,1\}$

If the dimension of the PDDE is n, then the dimension of the QME is n^2

Concrete set ups and results

The Heisenberg chain set up

Hamiltonian \hat{H} , local energies $\hat{h}^{(\mu)}$ and local energy currents $\hat{J}^{(\mu)}$

$$\begin{split} \hat{H}_{\text{S}} &= \sum_{\mu} \frac{\Omega}{2} \, \hat{\sigma}_{\text{z}}^{(\mu)} + J(\hat{\sigma}_{\text{x}}^{(\mu)} \otimes \hat{\sigma}_{\text{x}}^{(\mu+1)} + \hat{\sigma}_{\text{y}}^{(\mu)} \otimes \hat{\sigma}_{\text{y}}^{(\mu+1)} + \Delta \hat{\sigma}_{\text{z}}^{(\mu)} \otimes \hat{\sigma}_{\text{z}}^{(\mu+1)}) \\ \hat{h}^{(\mu)} &= \frac{\Omega_{\mu}}{2} \, \hat{\sigma}_{\text{z}}^{(\mu)} \quad \hat{J}^{(\mu)} = iJ\Omega_{\mu} [\hat{\sigma}_{+}^{(\mu)} \hat{\sigma}_{-}^{(\mu+1)} - \hat{\sigma}_{-}^{(\mu)} \hat{\sigma}_{+}^{(\mu+1)}] \end{split}$$

local coupling to two bosonic baths baths

$$\hat{V} = (\hat{\sigma}_{x}^{(1)} \sum_{n} \hat{a}_{L,n}^{+} + \hat{a}_{L,n}) + (\hat{\sigma}_{x}^{(N)} \sum_{n} \hat{a}_{R,n}^{+} + \hat{a}_{R,n})$$

Project onto $\hat{\rho}_{S}(t) \otimes \hat{\rho}_{B}^{L}(\beta_{L}) \otimes \hat{\rho}_{B}^{R}(\beta_{R})$, assume $\Omega >> J$, "minimum invasive Lindbladization" \Rightarrow four Lindblad operators and rates:

$$\hat{\mathcal{E}}_{L,R}^{+,-} = \hat{\sigma}_{+,-}^{(L,R)} + \eta(\mathcal{T}_{L,R})\hat{\sigma}_{-,+}^{(L,R)} \quad \alpha_{L,R}^{+,-} = \alpha^{+,-}(\mathcal{T}_{L,R})$$

Minimum invasive means $\eta \neq 0$, for $\Omega \approx J$ it is unclear whether or not a reasonable Lindbladization exists.

Dependence of current and gradient in the Heisenberg chain on the bath coupling strength λ and the chain length.

The bulk conductivity of any finite chain depends on the bath coupling strength.

Results on different anisotropies (particle-particle interactions) Δ

The gradients for all Δ seem to vanish for infinite chains. Only for $\Delta \approx 1.6$ the current seems to vanish for the infinite chain.

For $\Delta\approx 1.6$ there may be regular diffusive transport. If so, we expect the respective energy diffusion coefficient to be $D=2.34\cdot 10^{-2}$ with a computational error on the order of 5%

The "one particle modular quantum system", results on decay of density waves

probability for the exitation to be at site μ : $P_{\mu} = \langle \hat{P}_{\mu} \rangle$

density wave: $F_k = \sum_{\mu} \cos(k\mu) P_{\mu}$

diffusive: $F_k \propto e^{-Dk^2t}$

ballistic: e.g. $F_k \propto e^{-Dk^2t^2}$

diffusion condition: $\frac{4\pi^2 n \lambda k}{\delta \epsilon} \gg 1$

diffusion coefficient: $D=rac{2\pi n\lambda^2}{\delta\epsilon}$

the "one particle modular quantum system" with baths

Lindblad operators and rates: $\hat{E}^{L} = (\sum_{n} |n, L\rangle)\langle 0|, \ \alpha^{L} = I$ $\hat{E}^{R}_{R} = |0\rangle\langle n, R|, \ \alpha^{R}_{R} = r$

- diffusion coeffients from bath-scenario and denisty wave decay may be in quantitative accord
- Internal diffusion coefficent is independent of bath coupling strength over a wide range
- an adequate bath-scenario may make the diffusive-ballistic transition visible

dependence of transport coefficient on the bath coupling strength

The "take home message":

Carefully desigend bath-coupling scenarios may help to quantitatively describe bulk transport properties of quantum systems. However, a detailed understanding of the role of the bath modelling and powerful tools to solve the resulting equations are required.

More information, literature, etc. : ask me or visit our webpage.

Many thanks to M. Michel, R. Steinigeweg, H. Wichterich, M. Ogiewa, and the audience!