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The "why” and the "how”

cold bath

Why? = To determine (bulk) transport How?
properties of systems )

Other tools: @ find a pertinent equation of motion for

map onto a Boltzmann equation p coupled to different baths

linear response (Kubo formula) @ find its stationary non-equilibrium state

@ extract density gradient Vn(x) and

°

°

@ project onto density waves ! °
current j(x) and compute D = j/Vn

°

Landauer formula ... etc.

Is the so described transport behavior due to the system or the bath contacts?
How does this transport description compare to other descriptions?
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Modelling reservoirs = Quantum Master Equations (QME)

"microscopical”
model system+bath+coupling:

A a N d R
H=H, ndnan+V, —p=ilH,p
s+Zeaa + 3 i[H, 7]

"Project” onto ps(t) ® pe(B) and truncate
the, e.g., Nakajima-Zwanzig equation at
leading order

80 = [ )

Redfield approximation (QME):

& ps(e) = i[Als, ps(6)] + Gs(2)

G: superoperator, linearily maps a matrix
onto another

“phenomenological"

find a linear, time local equation which
evolves a density matrix into a density
matrix, i.e., "Lindblad form” (QME):

2ps(t) =i[Hs, ps(t)] + Lps
Lps =, ak (EkﬁSEJ — HE/Ex, ﬁs]+)

Determine Ek,ak from the "result”

The problem: G is not necessarily of
Lindblad form.

"Lindbladization” is a subtle thing, crucial
features may be lost

But why Lindblad form?
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Stochastic unravelling: a way to solve the QME

The solution (t) of a QME in Lindblad form is equivalent to an ensemble of

trajectories generated by , e.g., this piecewise deterministic differential equation
(PDDE):

dlo(e) = =i G((e)) v (e dt+Z<|Z:3:>” |¢(t)>>dnk

G () = A= 5 3" ol Bi — arl (o)
k

(dn) = ||Ec|w(t))|2dt, dnxdny = 0k dnye

Poisson increments: dn, € {0,1}

If the dimension of the PDDE is n, then the dimension of the QME is n?
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Concrete set ups and results

The Heisenberg chain set up
Hamiltonian A, local energies h) and local energy currents J(*)

’:IS:Z +J( N)®U#+1)+Uy ®0,M+1)+Ao_u)®a_u+1))
h(“) 2“ A(“‘) _I] =iJQ [0. ,u+1) a.£ )&+M+1)]

local coupling to two bosonic baths baths

50N 8l an) + (60D 8k .+ rn)
n n

Project onto ps(t) ® p5(8L) ® pR(Br), assume Q >> J, "minimum invasive
Lindbladization” = four Lindblad operators and rates:
Elp =60 4 n(Tr)s™Y afg =a™ (TLgr)

Minimum invasive means n # 0, for Q = J it is unclear whether or not a
reasonable Lindbladization exists.
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Heisenberg chain only
appears to be diffusive
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Dependence of current and gradient in the Heisenberg chain on the bath
coupling strength A\ and the chain length.

The bulk conductivity of any finite chain depends on the bath coupling
strength.
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Results on different anisotropies
(particle-particle interactions) A

The gradients for all A seem to
vanish for infinite chains.

Only for A ~ 1.6 the current seems
to vanish for the infinite chain.

For A = 1.6 there may be regular
diffusive transport. If so, we expect
the respective energy diffusion
coefficient to be D =2.34 1072
with a computational error on the
order of 5%
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The “one particle modular quantum system”, results on decay of density

waves
‘ o } } n intermediate wavelength:
SI==N | | E 1
J & ®..Q !
AE A A A
o o =
u=0 u=1 u =N-1 2 0.5
probability for the exitation g
to be at site u: P, = (P,)
0
0 0.12 0.24

time ¢ [T

long (short) wavelength:

density wave: Fx = 3_  cos(kp)Py

diffusive: Fy e DKt

. P22
ballistic: e.g. Fx o e Pkt

mode F'

diffusion condition: ““;—:“‘ >1

. . - . 2
diffusion coefficient: D = 2”5"2
time ¢ [T
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the “one particle modular quantum system” with baths

local currents and probabilities
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dependence of transport coefficient

@ diffusion coeffients from bath-scenario and on the bla/;cﬂh coupling Stl';fggth

denisty wave decay may be in quantitative 4
accord

@ Internal diffusion coefficent is independent
of bath coupling strength over a wide
range

@ an adequate bath-scenario may make the
diffusive-ballistic transition visible
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The “take home message’

Carefully desigend bath-coupling scenarios may help to quantitatively describe
bulk transport properties of quantum systems. However, a detailed
understanding of the role of the bath modelling and powerful tools to solve the
resulting equations are required.

More information, literature, etc. : ask me or visit our webpage.

Many thanks to M. Michel, R. Steinigeweg, H. Wichterich, M. Ogiewa,
.... and the audience!
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