Traditional and alternative approaches to quantum transport

Jochen Gemmer

University of Osnabrück,

RWTH Aachen, Jan. 29. 2008
Contents

1 Basics and questions in transport theory

2 Alternative methods: projection onto density waves
 • “one particle” modular quantum system
 • Anderson models
 • “many particle” modular quantum systems

3 Alternative methods: modeling of coupled reservoirs
 • Heisenberg chains
Basics and questions in transport theory

"microscopic"
\[
\frac{d}{dt} \hat{\rho} = i\hbar \left[\hat{\rho}, \hat{H} \right]
\]

⇒ ? ⇒

"macroscopic"
\[
\vec{j} = \kappa \vec{F}, \quad \dot{n} = D \Delta n
\]

Boltzmann equation:
Adequate “Boltzmann-systems” show diffusive behavior

- Map the quantum system onto an adequate Boltzmann equation!
- Linearize the Boltzmann equation around an equilibrium state
- Invert the scattering matrix to find D

Kubo formula:
Finite $\kappa(\omega = 0)$ indicates normal transport

- Derived on the basis of an external force ⇒ $D \propto T \kappa$?
- Requires diagonalization of the full Hamiltonian
- Result hard to interpret for finite (pieces of larger) systems
Alternative methods: projection onto density waves

\[\hat{m}_q = \sum_x \cos(qx)\hat{n}(x) \quad \text{diff.: } \Rightarrow \text{Tr}\{\hat{m}_q \hat{\rho}(t)\} \propto e^{-q^2Dt} \quad \text{(ball., e.g., : } \Rightarrow \propto e^{-q^2Dt^2}) \]

Determine \(\text{Tr}\{\hat{m}_q \hat{\rho}(t)\} =: m_q \) with a projection operator method, e.g., “TCL”

\[\hat{H} = \hat{H}_0 + \lambda \hat{V}, \quad [\hat{H}_0, \hat{m}_q] = 0, \quad \hat{\rho}(0) = \sum_q C_q \hat{m}_q, \quad \text{translational invariance} \]

\[\Rightarrow \hat{m}_q = \sum_n \lambda^n K_{n,q}(t)m_q \quad (n : \text{even}), \quad K_{2,q}(t) \approx q^2 k_2(t) \]

Assume higher orders are negligible and \(k_2(t) \) looks like this:

\[\Rightarrow \hat{m}_q = -q^2 \lambda^2 Rm_q \]

- divide \(\hat{H} \) into \(\hat{H}_0 \) and \(\hat{V} \)
- diagonalize \(\hat{H}_0 \)
- calculate \(k^2(t) \) and estimate higher order terms
“one particle” modular quantum system:

\[
\hat{H}_0 = \sum_{\mu=1}^{N} \hat{h}_\mu
\]
\[
\hat{V} = \sum_{\mu=1}^{N} \hat{v}_\mu
\]

\[
\hat{h}_\mu = \sum_i h_i \hat{a}_{\mu,i}^{\dagger} \hat{a}_{\mu,i}, \quad h_i := \Delta E + i \frac{\delta \varepsilon}{n}, \quad \hat{v}_\mu = \sum_{ij} c_{ij} \hat{a}_{\mu,i}^{\dagger} \hat{a}_{\mu+1,j} + \text{h.c.}
\]

- This may be viewed as a model for: a particle moving on lattice sites, energy exchange between molecules, etc.
- The model features: no particle-particle interaction, nearest neighbor random interband hoppings, no disorder, a finite amount of sites
- Exploiting the Bloch theorem the dynamics of this model can be directly, numerically calculated up to, e.g., \(n \approx 1000, N \approx 30 \)

What are the dynamics of the particle density?
Results of the projection onto density waves:
corr. function and $k_2(t)$

long/short wavelength

Deviations from diffusion:

There is a lengthscale dependent “diffusive - ballistic transition”
3d-Anderson models: projection onto density waves

\[
\hat{H} = \sum_r \epsilon(r) \hat{a}_r^\dagger(r) \hat{a}(r) + \alpha \sum_{NN} \hat{a}_r^\dagger(r) \hat{a}(r') + \text{h.c.}
\]

\[\epsilon(r): \text{Gaussian random numbers, } \sigma \quad \Rightarrow \quad \hat{H} = \sum_{\mu=0}^{N-1} h_0(\mu) + \lambda \sum_{\mu=0}^{N-1} \hat{v}(\mu, \mu + 1)\]

Intermediate wavelength

\[m_q(t)\]

Long/short wavelength

\[m_q(t)\]

\[n = 30, \quad N = 42, \quad \sigma/\alpha = 1\]

The diffusive wavelength regime appears to be rather small.
Influence of higher order terms in the projection expansion

\(\lambda^2 K^2_q(t) \approx (q\lambda)^2 k^2(t) \) and \(k^2(t) \) may be evaluated straightforward

\(K^4(t) \) cannot be evaluated straightforward but we think we found a valid feasible estimation, which scales as \(\lambda^4 K^4_q(t) \approx (q\lambda)^4 k^4(t) \) as long its influence is “small”

(This only holds for interactions having “van Hove structure” which is the case for all models considered here)

\[\sqrt{1/\chi} : \text{range of diffusive wavelengths in between ballistic (short) and localized (long) wavelength.} \]

This suggests: diffusive behavior only between \(l_{\text{min}}, l_{\text{max}} \) with \(l_{\text{max}}/l_{\text{min}} \approx 7 \) for infinitely sized systems and “optimum” disorder
“many particle” modular quantum system:

defined on the full product space of the subunits, random NN-interactions, translational invariance, 1-d

consider transport of local energy:

intermediate wavelength:

\[m_q(t) \]

\[\lambda^2 K_{2,q}, \; \langle \lambda^4 K_{4,q} \rangle \]

long wavelength:

\[m_q(t) \]

\[\lambda^2 K_{2,q}, \; \langle \lambda^4 K_{4,q} \rangle \]

This indicates a lengthscale dependent “diff.-ball.-transition” in a (strongly) interacting, 1-d, quantum chaotic system.
Modeling of coupled reservoirs:

\[\hat{H} = \frac{d}{dt} \hat{\rho} = [\hat{H}, \hat{\rho}] + \mathcal{L}(\mu_1, \mu_2) \hat{\rho} \]

- find some \mathcal{L} that adequately models the reservoirs
- find the null-space ($\hat{\rho}_0$) of an non-Hermitian matrix of dimension d^2
- compute $j = \text{Tr}\{\hat{\rho}_0 \hat{j}\}$ and $\nabla n = \text{Tr}\{\hat{\rho}_0 \nabla \hat{n}\}$ to construct $D = j/\nabla n$
Reservoirs coupled to the Heisenberg chain, $\Delta = 1$:

$$\hat{H} = \sum_{\mu} B \hat{\sigma}_\mu^z + \lambda (\hat{\sigma}_\mu^x \hat{\sigma}_{\mu+1}^x + \hat{\sigma}_\mu^y \hat{\sigma}_{\mu+1}^y + \Delta \hat{\sigma}_\mu^z \hat{\sigma}_{\mu+1}^z) \quad \hat{n}(x) = \hat{n}_\mu = \hat{\sigma}_\mu^z$$

Find null-space of a $2^{24} \times 2^{24}$ non-Hermitian matrix? Here we used “stochastic unravelling”. ⇒ Probably ballistic transport in the limit of long chains.
The “take home message”:
Alternative approaches to quantum transport may help to get more detailed information on transport behavior with respect to the lengthscale. Furthermore quantitative analysis of strongly interacting 2d or 3d systems may possibly become feasible.

More information: ask me or visit our webpage.

Many thanks to M. Michel, R. Steinigeweg, H. Wichterich, H.-P. Breuer, C. Bartsch, and the audience!